Mechanisms of Perchlorate Degradation: An Overview

Ronnie Britto

5th Annual Joint Services Pollution Prevention and Hazardous Waste Management Conference and Exhibition San Antonio, Texas August 23, 2000

Presentation Overview

- Perchlorate Chemistry and Biotreatment Mechanisms
- In Situ Biotreatment Techniques for Perchlorate-Contaminated Soil and Groundwater
- Case Study
 - Application of Innovative In Situ
 Biotreatment Technology

- Ammonium Perchlorate Dissociation
- Solubility
 - Perchlorate (inorganic salts) is Extremely Soluble in Water
 - Sodium Perchlorate: 8 M
 - Potassium Perchlorate: 0.12 M

Adsorption

- Perchlorate Adsorbs Weakly to Soil
- Factors Include:
 - Soil Mineralogy
 - Organic Matter
 - pH
 - Ionic Strength
 - Competing Ions

$$CI^{-1} > NO^{-3} > CIO_4^{-1}$$

Volatility

- Relatively Low Vapor Pressure
- Volatilization is Not a Critical Remediation or Health Consideration

Chemical Reactivity

- Reduction is Thermodynamically Favorable
- Kinetically Limited in the Absence of Chemical or Biological Enzymes/Catalysts

- Precipitation and Complexation
 - Precipitates Poorly in Saturated Systems
 - Presence of K+1 ---> Precipitation of Potassium
 Perchlorate
 - High Concentrations → Potential Ammonium or Potassium Perchlorate Precipitation in Vadose Zone
 - Poor Complexing Agent

Biochemistry of Perchlorate

- Oxidized State
- Reduction is Thermodynamically Favorable
 - Acts as an Electron Acceptor in Microbial-Mediated Enzymatic Reactions
 - Perchlorate Respiration
 - Enzymes Reduce Kinetic Barrier and Thereby Facilitate Degradation

Biochemistry of Perchlorate

- Biodegradation Generally Occurs Under Anaerobic Conditions
 - Absence of Oxygen
- An Electron Donor is Required to Complete the Microbial Degradation Process
 - Carbon Substrate or Other Energy Source
- Perchlorate Competes with Other Electron Acceptors

Commonly Utilized Substrates for Perchlorate Biodegradation

- Natural Organic Carbon (TOC)
- Natural Organic Carbon Additives
 - Compost
 - Cottonseed
 - Mulch/Wood Chips
 - Vegetable Oil
 - Kenaf
- Industrial Sources: Food Process Wastes

Commonly Utilized Substrates for Perchlorate Biodegradation

- Synthetic Carbon Sources
 - Fructose/Sucrose
 - Acetate
 - Lactate
 - Ethanol

- Citrate
- Slow-Release PatentedLactate Compounds

- Carbon Source Selection
- Advantages and Limitations

Electron Acceptor Competition

- Dissolved Oxygen
- Nitrates
- Sulfates
- Chlorinated Solvents
 - Related Issues:
 - Overcoming Competition
 - Nitrate Reduction Similarity
 - Co-Contaminants

Perchlorate-Reducing Microorganisms

Bacterial Isolates

- **HAP-1**
- KJ1

Mixed Microbial Cultures

- Industrial Sources
- Natural (Indigenous and Ubiquitous) Cultures
- Domestic Wastewater

Bench-Scale Studies

Significance

- Perchlorate is a Relatively New Environmental Contaminant of Concern
- Site Specific Wastes and Conditions
- Can Cleanup Levels be Obtained?
- Instills Remediation Confidence

Objectives

- Microbial Kinetics and Degradation Rates
- Design Scale-up Factors

Bench-Scale Studies

- Types
 - Soil
 - Groundwater

- Mechanisms
 - Aqueous Phase
 - Attached Growth

- Location
 - Ex Situ
 - In Situ

- Bioreactors
 - Batch
 - Continuous

Bench-Scale Studies: Ex Situ

- Media Selection
 - SandPlastic Bio-Rings
 - Gravel– Plastic Beads
- Substrates
 - EthanolLactate
 - Acetate Fructose (or Molasses)
- Microbial Acclimation/Inoculation
- Flow Rates

Bench-Scale Studies: In Situ

- Bio-Barrier Simulation
- Attached Media Selection
 - Natural Soil
- Gravel

- Substrates
 - Compost
 - Sawdust
 - Vegetable Oil

- Cottonseed
- Slow-Release PatentedLactate Compounds

Bench-Scale Studies: In Situ

- With/Without Microbial Inoculation
- Cleanup Goal Attainment
- Biochemical Changes
- Length of Effectiveness

Perchlorate Biodegradation Summary

- Natural Treatment
- Relatively Low Cost
- Reduces Concentrations Below Detection Limits
- Co-Contaminant Reduction
- In Situ and Ex Situ Applications

Perchlorate Biodegradation Summary

Design Issues

- Length of Effectiveness
- Microbe Selection and Acclimation
- Concentrations
- Treatment Consistency: Meets Regulatory Requirements
- Operation & Maintenance

Perchlorate Biodegradation Summary

- Applications
- Limitations
- Conditions
- Challenges
- Public Acceptance